

Alteration of Terrain Rules Workshop November 2008

Ridgely Mauck, PE, program supervisor

ridgely.mauck@des.nh.gov

&

Amy Clark, P.E.

amy.clark@des.nh.gov

Introduction

- Bathrooms
- Food
- Questions comment sheet
- Workshop Agenda 🖈

Rule Adoption Schedule

Final proposal:

http://des.nh.gov/organization/commissioner/legal/rulemaking/

Timeline:

- November 2008 3 Vol Stormwater Manual
 - Stormwater and Antidegradation
 - Post-Construction BMPs: Selection & Design
 - Construction Erosion & Sediment Controls
- November 20, 2008 JLCAR review anticipated
- January 1, 2009 Earliest adoption date

Outline

- A look at the new application form
- Sample calculations
- BMP Toolbox and Terminology
- Infiltration rate selection
- Floodplain discussion
- Q & A

New Application

• UIC form★

- Color coding HISS/SSSS mapping
 - Large enough to read soil groups within a subcathment
- Submittal order

Checklist

Sample calculations

But first, some basic math skills...

You may see.... WQV = (P)(Rv)(A)/12

This equation only works with the correct units!

P must be in inches and A in square feet, to get ft³ as a result.

The DES equation for WQV is **NOT** dependent on a conversion factor.

Unit Independent: WQV = (P)(Rv)(A)

For example, if you enter P = 1" and A in acres, the result of your WQV is in **acre-inches**.

DES equation: Rv = 0.05 + 0.9(I) ... note I is in *decimal* form

You may also see: Rv = 0.05 + 0.009(I) note I is in percent

$WQV = P \times RV \times A$

```
P = 1"
Rv = 0.05 + 0.9I
I = %imp cover, in decimal form
A = area draining to the structure
```

Example:

Given:

A = 0.80 ac draining to the structure, 0.60 ac of this area is impervious

Solution:

$$I = 0.60 \text{ ac} = 0.75$$

0.80 ac

$$Rv = 0.05 + 0.9I = 0.05 + 0.9(0.75) = 0.725$$

$$WQV = 1" \times 0.725 \times 0.80ac = 0.58 ac-in$$

WQF = qu × WQV

qu = unit peak discharge from TR-55 Exhibits 4-II or 4-III qu = f(Tc, Ia/P)

P = 1"

Ia = initial <u>abstraction = 0.25</u>

S = potential maximum retention = $\frac{1000}{CN}$ - 10

$$CN = 1000$$

 $10+5P+10Q-10[Q^2 + 1.25(Q)(P)]^{0.5}$

Q = the water quality depth in inches = WQV/AA = Area draining to the structure

NOTE that this CN is not the same as the subcatchment's CN. Rather it is a representative CN used to convert the water quality depth to a flow rate.

WQF example:

```
Location of project: Concord, NH

A = 1 acre draining to the structure, 60% impervious cover

Tc = 12 min (0.2 hrs)
```

Solution: $WQV = P \times Rv \times A$ Rv = 0.05 + 0.9(I) = 0.05 + 0.9(0.60) = 0.59 $WQV = 1'' \times 0.59 \times 1ac = 0.59 ac-in$ Q = WQV/A = 0.59 ac-in / 1 ac = 0.59 inCN = 1000 = 95.4 $10+5P+10Q-10[Q^2+1.25(Q)(P)]^{0.5}$ S = (1000/CN) - 10 = 1000/95.4 - 10 = 0.48 in Ia = 0.25 = 0.2(0.48) = 0.10 in

$$Ia/P = 0.10 in / 1 in = 0.10$$

 $\textbf{Exhibit 4-III} \ \ \text{Unit peal discharge } (q_u) \ \text{for NRCS (SCS) type III rainfall distribution}$

$GRV = A_I \times Rd$

 $A_{\rm I}$ =impervious surfaces that will exist on the site after development

Rd = the groundwater recharge depth

/	HSG	R _d (in)
	A	0.40
	В	0.25
	C	0.10
	D	0.00

Example:

Given:

A = 10 acres

 $A_{\rm I}$ = 1.5 ac (This area covers 1 ac HSG A soil & 0.5 ac C soil)

Solution:

 $GRV = A_T \times Rd$

Weighted Rd = [(1 ac)(0.40") + (0.5 ac)(0.10")]/1.5 ac = 0.30"

GRV = $1.5 \text{ ac } \times 0.30'' = 0.45 \text{ ac-in}$

WQF example continued:

Note csm = cfs/mi²

```
qu = 560 cfs/mi<sup>2</sup>/in

WQF = qu x WQV

= 560 cfs/mi<sup>2</sup>/in x 0.59 ac-in x (1 mi<sup>2</sup>/640 ac)

(0.52 cfs)
```

Stormwater Treatment Tool Box & Terminology

- 1. Stormwater ponds
- 2. Stormwater wetlands
- 3. Infiltration practices
- 4. Filtering practices
- 5. Flow through swales
- 6. Vegetated Buffers

Stormwater ponds

Example: Wet Extended Detention Pond

If extended detention is used, how do I show this volume is detained for at least 24 hours?

 $Q_{max} \leq 2 Q_{avg}$

Where $Q_{avg} = \frac{Extend\ detention\ Volume}{24\ hrs}$

Infiltration practices

Example: Infiltration pond

Criteria:

Store the WQV below the overflow without depending on infiltration Separation requirements: 3' of separation; 4' if within a GPA or WSIPA

Filtering Practices

Examples:

- 1. Surface sand filters
- 2. Pervious pavement
- 3. Bioretention areas
- 4. Tree box filters

Bioretention criteria:

Store the WQV below the overflow without depending on infiltration. Storage includes storage above the filter& the filter media voids.

Separation requirements: 1' below the bottom of the filter course.

If in a GPA or WSIPA, 1' below bottom of practice or 2x filter depth and 1' below bottom of filter course.

Infiltration rate selection

• Initial screening & Field verification

• Evaluation of selected infiltration areas

- Default
- Field rates
- Lab rates

Default Values

- Determine which soil series are at the location of the practice.
- Determine the limiting layer (slowest Ksat) reported beneath the proposed bottom of the practice using the Physical Soil Properties reported by the USDA NRCS.
- The reported Ksat for a given layer typically has a range of values. Select the slowest value for the default rate.
- Use a weighted average by area if more than one soil series is present. Apply a minimum factor of safety of 2.

Default values may be used for native materials only.

Field Tests

- Design infiltration rates (Ksat tests)
 - •Guelph Permeameter
 - $\hbox{-} \textbf{Compact Constant Head Permeameter} \\ e.g., A moozemeter \\$
 - Double-Ring Infiltrometer
 - •Borehole Infiltration test

Double-Ring Infiltrometer

- •Qualified professional soil scientist, professional geologist, or an engineer
- •Test at the proposed bottom elevation and within the footprint of the infiltration facility
- More tests needed as basin gets bigger
- •Apply factor of safety of 2 to the field measured infiltration rate.

Lab Tests

- For proposed fill only
- for Permeability of Granular Soils (Constant Head); or
- Methods for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter.

Extreme caution! Many states prohibit infiltration into fill.

Limitations

- Soils too slow underdrain may be necessary
- Soils too rapid for treatment treat prior to recharging or amend soil:

Default method: Abenaki, Adams, Agawam, Boscawen, Caesar, Champlain, Colton, Croghan, Deerfield, Haven, Hermon, Hinckley, Hoosic, Metallak, Matunuck, Pawcatuck, Quonset, Raypol, and Warwick.

*** some of these soils <u>may</u> be slow enough, but must field test to confirm

Testing: > 10 inches per hour

Floodplain Discussion

 Development within 100-yr floodplains will require compensatory storage and/or hydraulic analysis

 Additional requirements may evolve from the results of the Comprehensive Flood Management Study Commission

Comprehensive Flood Management Study Commission

• Laws of 2007, HB 648

Final Report September 2008

http://gencourt.state.nh.us/statstudcomm/reports/1853.pdf

Commission Exec. Summary

• Flood damage can be mitigated through land use & development regulations.

- Regulations must be implemented to protect undeveloped floodplains

- Need accurate floodplain mapping
 - Acknowledges outdated data and models

Commission Recommendations

Prohibit new state facilities in flood hazard zones

- Incorporate floodplain management into AoT & Wetland regulations
 - Passage of 100-yr flood
 - No increase in flood stages to abutting properties to max. extent possible
- Municipalities to develop ordinances to prohibit construction (fill) within 100-yr floodplain

CFR 44 – Emergency Management & Assistance

When flood elevations established but not floodway:

No new construction or fill within zones A1-30 or AE unless demonstrated no increase > 1' in flood elev due to new development, existing and anticipated

Floodplain Encroachment

LINE A - B IS THE FLOOD ELEVATION BEFORE ENCROACHMENT LINE C - D IS THE FLOOD ELEVATION AFTER ENCROACHMENT

[.] SURCHARGE NOT TO EXCEED 1.0 FOOT (FEDERAL EMERGENCY MANAGEMENT AGENCY REQUIREMENT) OR LESSER HEIGHT IF SPECIFIED BY STATE.

Email discussions?

- Overview of application requirements
- General permit by rule
- Buffers
- Pervious Pavement design and modeling
- Areas that need further protection

• Others? (put on comment sheet)

Q & A